
Bitcoin Script
ENTERING THE PROGRAMMABLE ECONOMY

Stéphane Roche

2018-12-19

CREATIVE COMMONS

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

ABOUT STEPHANE

Work at Ledger - hardware wallet company

2015

Work on Ethereum
• Learn and play
• Co-found non-profit organization Asseth
• Contribute to the ERC20 Consensys smart contracts
• Dether.io

2016–2017

Found Bitcoin Studio

Bitcoin education, dev, consulting

2017–2019

https://www.bitcoin-studio.com
@janakaSteph on Twitter
bitcoin-studio@protonmail.com

5 Future Improvements

1 Transaction Basics and Standard
Output Types

4 Arbitrary Scripts Examples

3 Opcodes

2 Script Validation Logics

OUTLINE

TRANSACTION
BASICS AND

STANDARD OUTPUT
TYPES

1

INPUT-OUTPUT CHAIN

• Any Bitcoin transaction is technically a “smart contract”

• A Bitcoin smart contract is a predicate (returns true or false)

• Achieved through execution of challenge/response scripts

• Every bitcoin validating node executes the scripts
• All the inputs are validated independently

REVERSE POLISH NOTATION

• Operators follow their operands

• Commonly used in stack-
oriented programming languages

POLICY RULES - STANDARD TX

• IsStandard() and IsStandardTx() tests
• src/policy/policy.cpp
• Check that tx is standard
• Check various properties in inputs, outputs and other tx parts

• Only standard tx are mined and relayed by Bitcoin Core nodes

• Safety measures against DoS attacks

• Force good behavior without consensus enforcement
• More flexible
• Example: the tx version number

STANDARD OUTPUT TYPES

• TX_PUBKEY

• TX_PUBKEYHASH

• TX_SCRIPTHASH

• TX_MULTISIG (Bare multisig – BIP11)

• TX_NULL_DATA

• TX_WITNESS_V0_KEYHASH

• TX_WITNESS_V0_SCRIPTHASH

• TX_WITNESS_UNKNOWN

• TX_NONSTANDARD

SCRIPT
VALIDATION

LOGICS2

PAY TO PUBLIC KEY

• Challenge script: <Public Key> OP_CHECKSIG

• Response script: <Signature>

PAY TO PUBLIC KEY HASH

• P2PKH script has two required conditions
• that the supplied public key match the public-key hash
• that the supplied signature match that public key

P2PKH ADDRESS

MULTI-SIGNATURE SCRIPTS

• m-of-n multisig challenge script
• n public keys up to 3 (standard policy)
• m <Public Key 1> · · · <Public Key n> n OP_CHECKMULTISIG

• Response script provides signatures created using any m out of
the n private keys
• OP_0 <Signature 1> · · · <Signature m>

PAY TO SCRIPT HASH

• Allows specification of arbitrary scripts as payment destinations

• Specific two steps validation logic

• Challenge script
• OP_HASH160 <RedeemScriptHash> OP_EQUAL

• Response script
• <Response To Redeem Script> <Redeem Script>

• Cannot be used recursively inside the redeemScript itself
• P2SH inside P2WSH or P2SH is invalid
• P2WSH inside P2WSH is invalid

P2SH ADDRESS

NULLDATA SCRIPTS

• Challenge script: OP_RETURN <Data>
• OP_RETURN terminates script execution immediately

• No valid response script exists
• Null data outputs are unspendable
• Any bitcoins locked by a null data challenge script are lost forever

• Policy rules
• Maximum scriptPubkey length for the tx to be relayed is 83 bytes

• 80 bytes of data, +1 for OP_RETURN, +2 for the pushdata opcodes
• Only one nulldata output per tx that pays exactly 0 satoshis

• Consensus rules
• Allow nulldata outputs up to the maximum allowed scriptPubkey size of 10,000 bytes

• Used for asset creation, document notary, digital arts and others

WITNESS VALIDATION LOGIC

• Versioned witness program triggers witness validation logic
• <version byte> <witness program>

• Located in scriptPubkey in native witness programs

• Located in scriptSig, as a unique stack item, in P2SH witness
programs

NATIVE V.0 WITNESS PROGRAMS

• scriptSig is empty
• scriptPubKey is a versioned witness program

• Version byte 0 + witness program

• Witness
• <signature> <pubkey> (P2WPKH)
• data + witnessScript (P2WSH)

• P2WPKH program
• 20-byte witness program must match pubKey’s HASH160
• pubKey’s HASH160 and CHECKSIG are done automatically

• P2WSH program
• 32-byte witness program must match witnessScript’s SHA256
• witnessScript’s SHA256 and comparison is done automatically
• The redeem script moved to witness and called witnessScript

NATIVE P2WPKH LOCKING SCRIPT

Witness version
/ Version byte

20-bytes witness program

P2PKH

P2WPKH

P2SH V.0 WITNESS PROGRAMS

• scriptPubkey is a standard P2SH script
• scriptSig is a versioned witness program

• VWP pushed onto the stack as a single stack item
• HASH160
• Hash comparison

• Witness
• <signature> <pubkey> (P2SH-P2WPKH)
• data + witnessScript (P2SH-P2WSH)

• P2SH-P2WPKH
• 20-byte witness program must match pubKey’s HASH160

• P2SH-P2WSH
• 32-byte witness program must match witnessScript’s SHA256

Is it a
witness

program?

No

Is it a
P2PKH? Is it a P2SH?

Is it a native
witness

program?

Is it a
P2WPKH?

Is it a
P2WSH?

Is it a P2SH
witness

program?

Is it a P2SH-
P2WPKH?

Is it a P2SH-
P2WSH?

OPCODES3

// push value
OP_0 = 0x00,
OP_FALSE = OP_0,
OP_PUSHDATA1 = 0x4c,
OP_PUSHDATA2 = 0x4d,
OP_PUSHDATA4 = 0x4e,
OP_1NEGATE = 0x4f,
OP_RESERVED = 0x50,
OP_1 = 0x51,
OP_TRUE=OP_1,
OP_2 = 0x52,
OP_3 = 0x53,
OP_4 = 0x54,
OP_5 = 0x55,
OP_6 = 0x56,
OP_7 = 0x57,
OP_8 = 0x58,
OP_9 = 0x59,
OP_10 = 0x5a,
OP_11 = 0x5b,
OP_12 = 0x5c,
OP_13 = 0x5d,
OP_14 = 0x5e,
OP_15 = 0x5f,
OP_16 = 0x60,

// control
OP_NOP = 0x61,
OP_VER = 0x62,
OP_IF = 0x63,
OP_NOTIF = 0x64,
OP_VERIF = 0x65,
OP_VERNOTIF = 0x66,
OP_ELSE = 0x67,
OP_ENDIF = 0x68,
OP_VERIFY = 0x69,
OP_RETURN = 0x6a,

// stack ops
OP_TOALTSTACK = 0x6b,
OP_FROMALTSTACK = 0x6c,
OP_2DROP = 0x6d,
OP_2DUP = 0x6e,
OP_3DUP = 0x6f,
OP_2OVER = 0x70,
OP_2ROT = 0x71,
OP_2SWAP = 0x72,
OP_IFDUP = 0x73,
OP_DEPTH = 0x74,
OP_DROP = 0x75,
OP_DUP = 0x76,
OP_NIP = 0x77,
OP_OVER = 0x78,
OP_PICK = 0x79,
OP_ROLL = 0x7a,
OP_ROT = 0x7b,
OP_SWAP = 0x7c,
OP_TUCK = 0x7d,

// splice ops
OP_CAT = 0x7e,
OP_SUBSTR = 0x7f,
OP_LEFT = 0x80,
OP_RIGHT = 0x81,
OP_SIZE = 0x82,

// bit logic
OP_INVERT = 0x83,
OP_AND = 0x84,
OP_OR = 0x85,
OP_XOR = 0x86,
OP_EQUAL = 0x87,
OP_EQUALVERIFY = 0x88,
OP_RESERVED1 = 0x89,
OP_RESERVED2 = 0x8a,

// numeric
OP_1ADD = 0x8b,
OP_1SUB = 0x8c,
OP_2MUL = 0x8d,
OP_2DIV = 0x8e,
OP_NEGATE = 0x8f,
OP_ABS = 0x90,
OP_NOT = 0x91,
OP_0NOTEQUAL = 0x92,

OP_ADD = 0x93,
OP_SUB = 0x94,
OP_MUL = 0x95,
OP_DIV = 0x96,
OP_MOD = 0x97,
OP_LSHIFT = 0x98,
OP_RSHIFT = 0x99,

OP_BOOLAND = 0x9a,
OP_BOOLOR = 0x9b,
OP_NUMEQUAL = 0x9c,
OP_NUMEQUALVERIFY = 0x9d,
OP_NUMNOTEQUAL = 0x9e,
OP_LESSTHAN = 0x9f,
OP_GREATERTHAN = 0xa0,
OP_LESSTHANOREQUAL = 0xa1,
OP_GREATERTHANOREQUAL = 0xa2,
OP_MIN = 0xa3,
OP_MAX = 0xa4,

OP_WITHIN = 0xa5,

// crypto
OP_RIPEMD160 = 0xa6,
OP_SHA1 = 0xa7,
OP_SHA256 = 0xa8,
OP_HASH160 = 0xa9,
OP_HASH256 = 0xaa,
OP_CODESEPARATOR = 0xab,
OP_CHECKSIG = 0xac,
OP_CHECKSIGVERIFY = 0xad,
OP_CHECKMULTISIG = 0xae,
OP_CHECKMULTISIGVERIFY = 0xaf,

// expansion
OP_NOP1 = 0xb0,
OP_CHECKLOCKTIMEVERIFY = 0xb1,
OP_NOP2 = OP_CHECKLOCKTIMEVERIFY,
OP_CHECKSEQUENCEVERIFY = 0xb2,
OP_NOP3 = OP_CHECKSEQUENCEVERIFY,
OP_NOP4 = 0xb3,
OP_NOP5 = 0xb4,
OP_NOP6 = 0xb5,
OP_NOP7 = 0xb6,
OP_NOP8 = 0xb7,
OP_NOP9 = 0xb8,
OP_NOP10 = 0xb9,

OP_INVALIDOPCODE = 0xff,

DATA PUSH

• Direct push for short data up to 75 bytes (01 - 4b)
• The opcode itself is the length in bytes
• Often written as OP_PUSHBYTES in explorers

• OP_PUSHDATA1 for 8-bit values (0 to 255)
• 4c + next byte contains byte length of data to be pushed

• OP_PUSHDATA2 for 16-bit values (0 to 65 535)
• 4d + next two bytes contains byte length of data to be pushed

• OP_PUSHDATA4 for 32-bit values (0 to 4 294 967 296)
• 4e + next four bytes contains byte length of data to be pushed
• Allows pushing up to 4GB onto the stack
• But no real use because of 520 bytes data push limit policy

• Minimal push policy
• Only use OP_PUSHDATA1 when direct push is not possible
• Only use OP_PUSHDATA2 when an OP_PUSHDATA1 is not possible, etc.

OP_VERIFY

• VERIFY is a conditional operator

• Pops the top item on the stack and sees if it's true; if not it ends
execution of the script

• VERIFY is usually incorporated into other opcodes
• OP_EQUALVERIFY, OP_CHECKLOCKTIMEVERIFY,

OP_CHECKSEQUENCEVERIFY, OP_NUMEQUALVERIFY,
OP_CHECKSIGVERIFY, OP_CHECKMULTISIGVERIFY

• Each of these opcodes does its core action and then does a verify afterward

• This is how we check conditions that are absolutely required for a
script to succeed

IF / THEN

• OP_IF, OP_ELSE, OP_ENDIF

• OP_NOTIF, OP_ELSE, OP_ENDIF

• OP_IFDUP
• Duplicates the top stack item only if it's not 0

• IF conditional checks the truth of what's before it (top item on the
stack)

• IF conditional tends to be in the locking script and what it's checking
tends to be in the unlocking script

OP_CHECKLOCKTIMEVERIFY

• Absolute timelocking of UTXO

• Blockheight < 500 million >= timestamp

• 1495652013 OP_CHECKLOCKTIMEVERIFY
• Check against May 24, 2017

• The opcode actually use the nLocktime field for consensus
enforcement
• So when respending a UTXO with CLTV, we must set the nLocktime to

enable the tx

OP_CHECKSEQUENCEVERIFY

• Relative timelocking of UTXO

• 100 OP_CHECKSEQUENCEVERIFY
• UTXO held for a hundred blocks past its mining

• 4224679 OP_CHECKSEQUENCEVERIFY
• 6 months encoded according to BIP68
• Multiple of 512 seconds + 23rd bit to true (here in decimal)

• The opcode actually use the nSequence field for consensus enforcement
• So when respending a UTXO with CSV, we must set the nSequence to enable the tx

• Used in Lightning Network to chain transactions
• A child tx cannot be used until the parent tx has been propagated, mined, and aged

by the time specified in the relative timelock

ALTSTACK

• OP_TOALTSTACK, OP_FROMALTSTACK

• Common feature in stack-based languages (cf. Forth)

• Not used in practice

• We can avoid using OP_(TO|FROM)ALTSTACK by putting
things onto the stack in a different order
• There are 18 stack manipulation operators, but only OP_DUP is used

with any regularity

SCRIPTS
EXAMPLES4

POOR MAN'S 1 OF 2 MULTISIG

IF
OP_DUP
OP_HASH160
OP_PUSHBYTES_20 <pubKeyHashA>

ELSE
OP_DUP
OP_HASH160
OP_PUSHBYTES_20 <pubKeyHashB>

ENDIF

OP_EQUALVERIFY
OP_CHECKSIG

• Alice unlocking script
• <signatureA> <pubKeyA> True

• Bob unlocking script
• <signatureB> <pubKeyB> False

POOR MAN'S 1 OF 2 MULTISIG #2

OP_DUP OP_HASH160 <pubKeyHashA> OP_EQUAL

IF

OP_CHECKSIG

ELSE

OP_DUP OP_HASH160 <pubKeyHashB> OP_EQUALVERIFY OP_CHECKSIG

ENDIF

• Alice unlocking script
• <signatureA> <pubKeyA>

• Bob unlocking script
• <signatureB> <pubKeyB>

ALGEBRA PUZZLES

• x + y = 99
• OP_ADD 99 OP_EQUAL
• 98 1

• 3x + 7 = 13
• OP_DUP OP_DUP 7 OP_ADD OP_ADD OP_ADD 13 OP_EQUAL
• 2

• x + y = 3, y + z = 5, x + z = 4
• OP_3DUP OP_ADD 5 OP_EQUALVERIFY OP_ADD 4 OP_EQUALVERIFY OP_ADD 3 OP_EQUAL

• 1 2 3

COMPUTATIONAL PUZZLES

• Crowdsourcing a computation
• Script requires the answer to computation, fund the P2SH as a reward

• Peter Todd’s hash collision bounties
• <value1> <value2>
• OP_2DUP OP_EQUAL OP_NOT OP_VERIFY OP_SHA1 OP_SWAP OP_SHA1 OP_EQUAL

• When SHA-1 was broken, 2.48 BTC were claimed

HASHLOCK

• Restricts the spending of an output until a specified piece of data is
publicly revealed

• We can create multiple outputs all restricted by the same hashlock

• OP_HASH256 6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000 OP_EQUAL

• Solution is the genesis block header

• No signature, so not secure

• Hashlock enables payment relay
• Allows to bind two otherwise unrelated transactions together

• Alice wants to pay Carol using Bob as an intermediary
• Carol produces a hash from a secret s
• Gives the hash to Alice
• Alice pays Bob with his sig + hash
• Bob pays Carol with her sig + hash
• Spending Bob’s payment requires Carol to publish s
• Also allowing Bob to spend Alice’s payment

• Payment relay of this sort is both contrived and insecure
• But groundwork for much more robust protocols

HASHED TIMELOCK CONTRACT

• General mechanism for off-chain contract negotiation
• Secret can be presented within an invalidation time window
• Sharing the secret guarantee to the counterparty that the transaction will never be broadcast

HASH160 DUP <R-HASH> EQUAL
IF

"24h" CHECKSEQUENCEVERIFY
2DROP
<Alice's pubkey>

ELSE
<Commit-Revocation-Hash> EQUAL
NOTIF

"2015/10/20 10:33" CHECKLOCKTIMEVERIFY DROP
ENDIF
<Bob's pubkey>

ENDIF
CHECKSIG

FUTURE
IMPROVEMENTS5

ELEMENTS

• Can operate as a standalone blockchain or as a pegged sidechain

• Advanced features extending the Bitcoin protocol

• Includes several new script opcodes
• Reintroduces most disabled opcodes
• OP_DETERMINISTICRANDOM produces a random num within a range from a seed
• OP_CHECKSIGFROMSTACK verifies a signature against a message on the stack

• Launched sidechains
• Elements Alpha: Bitcoin’s testnet sidechain launched in 2015
• Liquid: Bitcoin’s mainnet sidechain launched in 2018

CHECKSIGFROMSTACK

• Push signed msg from script to the stack, and check that it
verifies

• Some use cases
• Create a new type of lightning channel similar to Eltoo but better
• Oracles
• Delegation of authorisation to spend an output
• Covenants (with OP_CAT)
• Secure multiparty computations

• Hopefully shipped on late 2019 Soft Fork

COVENANTS

• Restricts how funds are allowed to be spent

• Reverse covenants (input restrictions)
• An input can only be created with this other one
• An input can only be created if this other one doesn't exist

• Can be recursive, applying to a chain of tx

• Allows covenant vaults (E.G. Sirer)
• Can revert a fraudulent transaction
• Can burn hacked coins
• Can't pay a merchant with a vault payment

SECURE MULTIPARTY COMPUTATION

• Lottery protocols that ensure that any party that aborts after
learning the outcome pays a monetary penalty to all other
parties

SIMPLICITY

• Bitcoin Script replacement
• Thanks to Segwit script versioning
• More expressive and ultra safe
• Paper from Dr. Russell O’Connor of Blockstream in 2017

• Typed, combinator-based, functional, without recursion, sequent-calculus-
based, formal denotational semantics in Coq, MAST-native

• Allows static analysis
• Compiles to a low-level model (the Bit Machine)
• Useful to measure the amount of computation of a script

• First step is to implement it in Elements

• Higher-level languages that compile down to Simplicity is possible, not the
hard part

SCRIPT SYSTEM GOALS

• Privacy
• Space efficiency
• Computational efficiency

• We want to convince the network that what we are trying to do
is authorized
• Today, every full node validate every transactions
• Why not just proving correct execution?

• Execution vs verifiability
• Ultimate goal is a Zero-Knowledge proof system

MERKLE BRANCHES IN SCRIPT (MAST)

• BIP114 - Merklized Abstract Syntax Trees (Merkle tree + AST)
• AST allows to split a program into its individual parts

• BIP116 / BIP 117 - MAST constructs without AST

• Usually scripts are just an OR of a few keys, timelocks and hashlocks

• Why reveal all possibilities?
• Put all disjunctions in a Merkle tree
• Only reveal the actually taken branch

• More privacy, more storage and computational efficiency

SCHNORR-BASED CONTRACTS

• Schnorr signatures are linear, not ECDSA
• We can add and substract signatures

• Scriptless scripts
• A way to do alchemy with signatures
• Smart contracts executed off-chain, only by the parties involved
• A valid transaction has a signature that proves correct contract execution

• Discreet log contracts
• A way to do alchemy with public keys
• An oracle determines division of funds

• Atomic coinswap (Adam Gibson), etc.

CONCLUSION

• Few building blocks are enough to create interesting financial
smart contracts and second layer networks

• Script versioning is awesome

• We are aiming towards a verification system, less an execution
platform
• On-chain storage/execution inherently doesn’t scale
• EC Schnorr will enable this paradigm shift

• Bitcoin future is bright, BUIDL

